Gated-GAN: Adversarial Gated Networks for Multi-Collection Style Transfer
نویسندگان
چکیده
منابع مشابه
Multi-Content GAN for Few-Shot Font Style Transfer
In this work, we focus on the challenge of taking partial observations of highly-stylized text and generalizing the observations to generate unobserved glyphs in the ornamented typeface. To generate a set of multi-content images following a consistent style from very few examples, we propose an endto-end stacked conditional GAN model considering content along channels and style along network la...
متن کاملStyle Transfer Generative Adversarial Networks: Learning to Play Chess Differently
The idea of style transfer has largely only been explored in image-based tasks, which we attribute in part to the specific nature of loss functions used for style transfer. We propose a general formulation of style transfer as an extension of generative adversarial networks, by using a discriminator to regularize a generator with an otherwise separate loss function. We apply our approach to the...
متن کاملGated networks: an inventory
Gated networks are networks that contain gating connections, in which the outputs of at least two neurons are multiplied. Initially, gated networks were used to learn relationships between two input sources, such as pixels from two images. More recently, they have been applied to learning activity recognition or multimodal representations. The aims of this paper are threefold: 1) to explain the...
متن کاملGated Bayesian Networks
This paper introduces a new probabilistic graphical model called gated Bayesian network (GBN). This model evolved from the need to represent real world processes that include several distinct phases. In essence a GBN is a model that combines several Bayesian networks (BN) in such a manner that they may be active or inactive during queries to the model. We use objects called gates to combine BNs...
متن کاملVirtual Adversarial Training and Data Augmentation for Acoustic Event Detection with Gated Recurrent Neural Networks
In this paper, we use gated recurrent neural networks (GRNNs) for efficiently detecting environmental events of the IEEE Detection and Classification of Acoustic Scenes and Events challenge (DCASE2016). For this acoustic event detection task data is limited. Therefore, we propose data augmentation such as on-the-fly shuffling and virtual adversarial training for regularization of the GRNNs. Bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2019
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2018.2869695